32 业务上需要顺序消费,怎么保证时序性?¶
消息传输和消费的有序性,是消息队列应用中一个非常重要的问题,在分布式系统中,很多业务场景都需要考虑消息投递的时序。例如,电商中的订单状态流转、数据库的 binlog 分发,都会对业务的有序性有要求。今天我们一起来看下,消息队列顺序消费的相关内容。
消息顺序消费有哪些困难¶
我们知道,消息队列中的队列是一个有序的数据结构,消息传递是顺序的,但在实际开发中,特别是在分布式场景下,消息的有序性是很难保证的,那么为什么实现有序性这么困难呢?下面进行拆解。
分布式的时钟问题¶
有序性可以分为业务上的有序和时间上的有序,先看一下时钟上的有序。在分布式环境下,消息的生产者、消费者和队列存储,可能分布在不同的机器上,不同的机器使用各自的本地时钟,由于服务器存在时钟偏斜等问题,本地时间会出现不一致,所以不能用消息发送和到达的时间戳作为时序判断标准。另一方面,分布式系统下缺乏全局时钟,这就使得绝对的时间顺序实现起来更加困难。
消息发送端和消费端的集群¶
在目前大多数消息队列的应用中,生产者和消费者都是集群部署,通过 ProducerGroup 和 ConsumerGroup 的方式来运行。
生产者如果存在多个发送实例,那么各个发送方的时间戳无法同步,所以消息发送端发送时的时序不能用来作为消息发送的有序判断。
同样的,消费端可能存在多个实例,即使队列内部是有序的,由于存在消息的分发过程,不同消费实例的顺序难以全局统一,也无法实现绝对的有序消费。
消息重传等的影响¶
我们知道,消息队列在传输消息时,可能会出现网络抖动导致的消息发送失败等,对这种场景的兼容,一般是通过进行合理地重传。消息的重传发生在什么时候是不可预知的,这也会导致消息传输出现乱序。
网络及内部并发¶
消息生产者集群或者消费端集群的方式,无法保证消息的绝对时序,如果只有一个消费端或者只有一个生产端呢?可以考虑这样一个场景,如果单纯地依靠消息队列本身来保证,那么在跨实例的情况下,因为网络传输的不稳定会有先后顺序,以及内部消费的并发等,仍然无法实现绝对有序。
通过上面的分析可以看到,保证消息绝对的有序,实现起来非常困难,除非在服务器内部,并且一个生产者对应一个消费者。但是这种情况的消息队列肯定是无法在实际业务中应用的,那么解决消息队列的有序性有哪些手段呢?下面从消息队列本身,以及业务设计上进行分析。
不同消息队列对顺序消费的保证¶
消息传输的有序性和不同的消息队列,不同业务场景,以及技术方案的实现细节等都有关系,解决消息传输的有序性,需要依赖消息队列提供对应的方式。
从消息队列自身的角度,可以分为全局有序和局部有序。当前大部分消息队列的应用场景都是集群部署,在全局有序的情况下,无法使用多分区进行性能的优化。在实际开发中,一般是应用局部有序,把业务消息分发到一个固定的分区,也就是单个队列内传输的方式,实现业务上对有序的要求。
以 Kafka 和 RocketMQ 为例,都实现了特定场景下的有序消息。
Kafka 顺序消息¶
Kafka 保证消息在 Partition 内的顺序,对于需要确保顺序的消息,发送到同一个 Partition 中就可以。单分区的情况下可以天然满足消息有序性,如果是多分区,则可以通过制定的分发策略,将同一类消息分发到同一个 Partition 中。
例如,电商系统中的订单流转信息,我们在写入 Kafka 时通过订单 ID 进行分发,保证同一个订单 ID 的消息都会被发送到同一个 Partition 中,这样消费端在消费的时候,可以保证取出数据时是有序的。
一个比较特殊的情况是消息失败重发的场景,比如同一个订单下的消息 1 和 2,如果 1 发送失败了,重发的时候可能会出现在 2 的后边,这种情况可以通过设置“max.in.flight.requests.per.connection”参数来解决,该参数可以限制客户端能够发送的未响应请求的个数,还可以在一定程度上避免这种消息乱序。
RocketMQ 顺序消息¶
RocketMQ 对有序消息的保证和 Kafka 类似,RocketMQ 保证消息在同一个 Queue 中的顺序性,也就是可以满足队列的先进先出原则。
如果把对应一个业务主键的消息都路由到同一个 Queue 中就可以实现消息的有序传输,并且 RocketMQ 额外支持 Tag 的方式,可以对业务消息做进一步的拆分,在消费时相对更加灵活。
从业务角度保证顺序消费¶
在我之前的项目中,消息消费的有序性,归根到底是一个业务场景的设计问题,可以在业务中进行规避,或者通过合理的设计方案来解决。
消息传输的有序性是否有必要¶
山不过来,我就过去,解决一个问题,如果从正面没有很好的解决方案,那么我们就可以考虑是否绕过它。考虑在你的业务中,是否必须实现绝对的消息有序,或者是否必须要有消息队列这样的技术手段。
比如在一个订单状态消息流转的业务场景中,订单会有创建成功、待付款、已支付、已发货的状态,这几个状态之间是单调流动的,也就是说,订单状态的更新需要保证有序性。考虑一下,如果我们要实现的功能是根据发货的状态,进行物流通知用户的功能,实际上因为这个状态是单调不可逆向的,我们可以忽略订单状态的顺序,只关注最后是否已发货的状态。
也就是说,在这个场景下,订单状态流转虽然是要考虑顺序,但是在具体的这个功能下,实际上不需要关注订单状态消息消费的时序。
业务中如何实现有序消费¶
除了消息队列自身的顺序消费机制,我们可以合理地对消息进行改造,从业务上实现有序的目的。具体的方式有以下几种。
- 根据不同的业务场景,以发送端或者消费端时间戳为准
比如在电商大促的秒杀场景中,如果要对秒杀的请求进行排队,就可以使用秒杀提交时服务端的时间戳,虽然服务端不一定保证时钟一致,但是在这个场景下,我们不需要保证绝对的有序。
- 每次消息发送时生成唯一递增的 ID
在每次写入消息时,可以考虑添加一个单调递增的序列 ID,在消费端进行消费时,缓存最大的序列 ID,只消费超过当前最大的序列 ID 的消息。这个方案和分布式算法中的 Paxos 很像,虽然无法实现绝对的有序,但是可以保证每次只处理最新的数据,避免一些业务上的不一致问题。
- 通过缓存时间戳的方式
这种方式的机制和递增 ID 是一致的,即当生产者在发送消息时,添加一个时间戳,消费端在处理消息时,通过缓存时间戳的方式,判断消息产生的时间是否最新,如果不是则丢弃,否则执行下一步。
总结¶
这一课时讨论了消息队列有序性的话题,消息的有序性可以分为时间上的有序和业务上的有序。
通过上面的分析可以看到,绝对的时间有序实现起来是非常困难的,即使实现了这样的消息队列,但在实际应用中的意义并不大。消息队列只是一个消息传输的解决方案,不是软件开发中的银弹,一般来说,我们可以通过业务中不同的场景,进行合理的设计,实现业务上的有序性。
现在你可以思考一下,在你的项目中,哪些场景要求消息传输和消费的有序性,具体是如何解决的?欢迎留言进行分享。