跳转至

11 高级技巧之日志分析:利用 Linux 指令分析 Web 日志

著名的黑客、自由软件运动的先驱理查德.斯托曼说过,“编程不是科学,编程是手艺”。可见,要想真正搞好编程,除了学习理论知识,还需要在实际的工作场景中进行反复的锤炼。

所以今天我们将结合实际的工作场景,带你利用 Linux 指令分析 Web 日志,这其中包含很多小技巧,掌握了本课时的内容,将对你将来分析线上日志、了解用户行为和查找问题有非常大地帮助。

本课时将用到一个大概有 5W 多条记录的nginx日志文件,你可以在 GitHub上下载。 下面就请你和我一起,通过分析这个nginx日志文件,去锤炼我们的手艺。

第一步:能不能这样做?

当我们想要分析一个线上文件的时候,首先要思考,能不能这样做? 这里你可以先用htop指令看一下当前的负载。如果你的机器上没有htop,可以考虑用yum或者apt去安装。

Drawing 0.png

如上图所示,我的机器上 8 个 CPU 都是 0 负载,2G的内存用了一半多,还有富余。 我们用wget将目标文件下载到本地(如果你没有 wget,可以用yum或者apt安装)。

wget 某网址(自己替代)

然后我们用ls查看文件大小。发现这只是一个 7M 的文件,因此对线上的影响可以忽略不计。如果文件太大,建议你用scp指令将文件拷贝到闲置服务器再分析。下图中我使用了--block-sizelsM为单位显示文件大小。

Drawing 1.png

确定了当前机器的CPU和内存允许我进行分析后,我们就可以开始第二步操作了。

第二步:LESS 日志文件

在分析日志前,给你提个醒,记得要less一下,看看日志里面的内容。之前我们说过,尽量使用less这种不需要读取全部文件的指令,因为在线上执行cat是一件非常危险的事情,这可能导致线上服务器资源不足。

Drawing 2.png

如上图所示,我们看到nginxaccess_log每一行都是一次用户的访问,从左到右依次是:

  • IP 地址;
  • 时间;
  • HTTP 请求的方法、路径和协议版本、返回的状态码;
  • User Agent。

第三步:PV 分析

PV(Page View),用户每访问一个页面就是一次Page View。对于nginxacess_log来说,分析 PV 非常简单,我们直接使用wc -l就可以看到整体的PV

Drawing 3.png

如上图所示:我们看到了一共有 51462 条 PV。

第四步:PV 分组

通常一个日志中可能有几天的 PV,为了得到更加直观的数据,有时候需要按天进行分组。为了简化这个问题,我们先来看看日志中都有哪些天的日志。

使用awk '{print $4}' access.log | less可以看到如下结果。awk是一个处理文本的领域专有语言。这里就牵扯到领域专有语言这个概念,英文是Domain Specific Language。领域专有语言,就是为了处理某个领域专门设计的语言。比如awk是用来分析处理文本的DSL,html是专门用来描述网页的DSL,SQL是专门用来查询数据的DSL……大家还可以根据自己的业务设计某种针对业务的DSL。

你可以看到我们用$4代表文本的第 4 列,也就是时间所在的这一列,如下图所示:

Drawing 4.png

我们想要按天统计,可以利用 awk提供的字符串截取的能力。

Drawing 5.png

上图中,我们使用awksubstr函数,数字2代表从第 2 个字符开始,数字11代表截取 11 个字符。

接下来我们就可以分组统计每天的日志条数了。

Drawing 6.png

上图中,使用sort进行排序,然后使用uniq -c进行统计。你可以看到从 2015 年 5 月 17 号一直到 6 月 4 号的日志,还可以看到每天的 PV 量大概是在 2000~3000 之间。

第五步:分析 UV

接下来我们分析 UV。UV(Uniq Visitor),也就是统计访问人数。通常确定用户的身份是一个复杂的事情,但是我们可以用 IP 访问来近似统计 UV。

Drawing 7.png

上图中,我们使用 awk 去打印$1也就是第一列,接着sort排序,然后用uniq去重,最后用wc -l查看条数。 这样我们就知道日志文件中一共有2660个 IP,也就是2660个 UV。

第六步:分组分析 UV

接下来我们尝试按天分组分析每天的 UV 情况。这个情况比较复杂,需要较多的指令,我们先创建一个叫作sum.shbash脚本文件,写入如下内容:

#!/usr/bin/bash
awk '{print substr($4, 2, 11) " " $1}' access.log |\
 sort | uniq |\
 awk '{uv[$1]++;next}END{for (ip in uv) print ip, uv[ip]}'

具体分析如下。

  • 文件首部我们使用#!,表示我们将使用后面的/usr/bin/bash执行这个文件。
  • 第一次awk我们将第 4 列的日期和第 1 列的ip地址拼接在一起。
  • 下面的sort是把整个文件进行一次字典序排序,相当于先根据日期排序,再根据 IP 排序。
  • 接下来我们用uniq去重,日期 +IP 相同的行就只保留一个。
  • 最后的awk我们再根据第 1 列的时间和第 2 列的 IP 进行统计。

为了理解最后这一行描述,我们先来简单了解下awk的原理。

awk本身是逐行进行处理的。因此我们的next关键字是提醒awk跳转到下一行输入。 对每一行输入,awk会根据第 1 列的字符串(也就是日期)进行累加。之后的END关键字代表一个触发器,就是 END 后面用 {} 括起来的语句会在所有输入都处理完之后执行——当所有输入都执行完,结果被累加到uv中后,通过foreach遍历uv中所有的key,去打印ipip对应的数量。

编写完上面的脚本之后,我们保存退出编辑器。接着执行chmod +x ./sum.sh,给sum.sh增加执行权限。然后我们可以像下图这样执行,获得结果:

Drawing 8.png

如上图,IP地址已经按天进行统计好了。

总结

今天我们结合一个简单的实战场景——Web 日志分析与统计练习了之前学过的指令,提高熟练程度。此外,我们还一起学习了新知识——功能强大的awk文本处理语言。在实战中,我们对一个nginxaccess_log进行了简单的数据分析,直观地获得了这个网站的访问情况。

我们在日常的工作中会遇到各种各样的日志,除了 nginx 的日志,还有应用日志、前端日志、监控日志等等。你都可以利用今天学习的方法,去做数据分析,然后从中得出结论。